Automating the Facility Supply Chain

Charles Wood, FIATECH
Tom Teague, ePlantData

Texas Technology Showcase
March 18, 2003
Outline

• Facility supply chain information problem

• An industry collaboration to solve the problem
Facility Life Cycle

EPCOM

ENVIRONMENT, HEALTH & SAFETY PERFORMANCE
RETURN ON INVESTMENT

INDIRECTS & OTHER
MATERIAL & EQUIPMENT
CONSTRUCTION
COMMISSIONING
STARTUP
OPERATING COSTS
MAINTENANCE COSTS
DECOMMISSIONING COSTS

PHASE DURATIONS / PROJECT CYCLE TIME
TURNAROUND DURATION
OUTAGE DURATION

ASSET RELIABILITY/AVAILABILITY

FACILITY LIFE CYCLE

FACILITY
Facility EPCOM
Supply Chain Issues

- Complex Supply Networks
 - Infinite combinations of suppliers/sub-suppliers
 - Multiple customer/supplier contracting options
- Competitive barriers to integration
 - Proprietary EPC technologies
 - Multiple variations on work processes
- Industry Fragmentation
 - Suppliers support multiple industry groups
 - No clear dominant leaders in any industry group
 - Few clear standards across industry groups
Problem: Software Islands
Problem: Lack of Interoperability

People use many software systems

- Research & Development
- Conceptual Design
- Detailed Engineering
- Construction Contractors
- Detailed Engineering
- Engineering Contractors
- Business planning
- Construction & Start-up
- Operations & Process Control
- Construction Suppliers
- Technical Data over Facility Life Cycle

BUT, information is transferred ON PAPER!
Facilities EPCOM
Information Issues

• Complex Information Sharing
 • Complicated technical/commercial information
 • Multiple incompatible information systems
 • Between customers, suppliers/sub-suppliers
 • Between functional processes, EPC vs O&M

• Competitive barriers to integration
 • Proprietary software systems
 • Competitive business strategies

• Legacy data problems
 • Software versions last 3-5 yrs
 • Facilities last 30-50 yrs
Facility EPCOM Information Exchange

IN A COMPLEX, INFORMATION RICH, TIME CRITICAL, FRAGMENTED, HIGH (INVESTMENT) RISK ENVIRONMENT;

REALTIME, ERROR-FREE, ACTIONABLE, SUPPLY CHAIN INFORMATION EXCHANGE IS CRITICAL
Lack of Interoperability

• NIST auto industry study finding: $1 Billion per year loss

• Construction industry estimates higher cost impact

• Longer cycle times impact schedules

• Electronic data not effectively reused, leveraged or archived
FIATECH
... a collaborative organization to accelerate integration and automation of major capital facilities projects

- Fully Integrated and Automated TECHnology for the capital facilities industry
- Industry-led, collaborative, nonprofit, cooperative research consortium
- Established in July 2000
- Research, development & deployment
- Manage projects aggressively to achieve practical results quickly
<table>
<thead>
<tr>
<th>FIATECH Members</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>... a mix of Owners, EPCs, Suppliers and Research Organizations</td>
<td></td>
</tr>
<tr>
<td>Abbott Labs</td>
<td>Intel</td>
</tr>
<tr>
<td>Aspen Technology</td>
<td>Intergraph</td>
</tr>
<tr>
<td>AVEVA, Inc.</td>
<td>Jacobs Engineering Group</td>
</tr>
<tr>
<td>B E & K</td>
<td>Lean Construction Institute</td>
</tr>
<tr>
<td>Bechtel</td>
<td>Merck & Co.</td>
</tr>
<tr>
<td>Bentley Systems</td>
<td>NASA</td>
</tr>
<tr>
<td>BNFL Engineering, Inc.</td>
<td>National Research Council of Canada</td>
</tr>
<tr>
<td>Burns and Roe Enterprises</td>
<td>NIST/Building & Fire Research Lab</td>
</tr>
<tr>
<td>CERL, U.S. Army Corp of Engin.</td>
<td>Pantellos Group Ltd</td>
</tr>
<tr>
<td>Chevron Texaco</td>
<td>Parsons Energy & Chemicals</td>
</tr>
<tr>
<td>Citadon</td>
<td>Primavera Systems</td>
</tr>
<tr>
<td>Daratech</td>
<td>Reality Capture Technologies</td>
</tr>
<tr>
<td>Day & Zimmermann International</td>
<td>Rohm and Haas Company</td>
</tr>
<tr>
<td>Dick Corporation</td>
<td>Saudi Aramco / Aramco Services</td>
</tr>
<tr>
<td>The Dow Chemical Company</td>
<td>S&B Engineering</td>
</tr>
<tr>
<td>E.I. DuPont de Nemours</td>
<td>Smithsonian Institute</td>
</tr>
<tr>
<td>ePlantData</td>
<td>Skire</td>
</tr>
<tr>
<td>Fluor Corporation</td>
<td>Stanford - CIFE</td>
</tr>
<tr>
<td>Impress Software</td>
<td>Time Industrial</td>
</tr>
<tr>
<td></td>
<td>Virginia Tech</td>
</tr>
<tr>
<td></td>
<td>Zachry Construction</td>
</tr>
</tbody>
</table>
• **Automating Equipment Information EXchange**
 – Phase 1 August 2002 – February 2003
 – Phase 2 being planned (Meeting: March 27, 2003)
• **ePlantData, Inc.**
 – AEX Project Principal Investigator
 – Provide consulting services to industry
 – Expertise: XML software connectivity and data asset management for capital facilities
Users say: “Can’t we automate this?”

Manual
Total: $N^2 - N$ interfaces
App: N interfaces

Point-to-Point
Total: $N^2 - N$ interfaces
App: N interfaces

The Best Way to Automate Data Exchange
Common-File
Total: N interfaces
App: 1 interface

This is mostly how we do it now!

For $N > 3$, this is too expensive
Equipment work process has 10+

Texas Industries of the Future #14 2003-03-18
Interoperable Future Vision

Data is available to anyone, wherever, and whenever it’s needed.
Benefits of Interoperability

Potential for $1 B annual savings*

- Reduce supply chain work process friction
- Reduce capital costs
- Shorten cycle times
- Reuse data over facility life cycle
- Reduce cost and implementation time for multi-vendor software integration

* To be estimated in current NIST study for the construction industry
Automating Equipment Information Exchange (AEX)

• **Objective:**
 – Enable electronic work processes through improved software interoperability

• **Approach:**
 – Select work processes with major barriers, unique challenges and significant potential benefits
 – Develop incremental, business-driven solutions
 – Practical *deployment in months, not years*
 – Promoting collaboration across industry groups to promote common, broad-industry solutions
AEX Initial Assessment

- **Assessed industry priorities**
 - Engineered equipment
 - Bulk equipment

- **Evaluated available technology**
 - EXtensible Markup Language (XML) is most promising
 - Leverage existing and previous industry efforts
AEX Project Results

- Work process and information flow analysis
- Software usage survey → High value transactions
- Reviewed/incorporated input from related XML efforts
 - Messaging: PIDX, ebXML, OAGIS, BPEL4WS, RosettaNet
 - Subject Schemas: PIDX, PlantData XML, pdXML
- Collaboration with ASHRAE, CII, DIPPR, NIBS O&M, PIDX, PIP, PlantSTEP
- Developing repeatable schema development process
AEX Project Results

• “XML Schema Development Guidelines”
 – GOAL: Consistent XML across multiple industry efforts

• Core reusable XML schemas for multiple disciplines
 – GOAL: Interoperability across multiple industry efforts

• XML schemas for engineered equipment
 – Basic information about all equipment types
 • equipment list exchange scenarios
 – Details for centrifugal pumps and shell & tube exchangers
 • data sheet exchange scenarios
 – Using API and PIP data sheets as input

• XML schemas to support multiple work processes
 – RFQ, Quote, PO, As Manufactured, Equipment List, BOM

• 14 companies participating
AEX Future Focus

• Incorporate industry review feedback
• Publication of current results
• Deployment of current results in software
• Extend XML schemas to additional equipment types
• Explore new opportunity areas:
 – Bulk materials procurement
 – Equipment list scenarios
 – O&M Handover Scenarios
Discussion?
For additional information / discussion, contact

• Charles Wood
 – 713-523-5380
 – cwood@fiatech.org

• Tom Teague
 – 713-728-9140
 – tom@eplantdata.com