Freescale Superior Energy Performance Certification

Mark Krawczyk
Agenda

- Freescale Company overview
- Oak Hill Site
- SEP training and implementation of energy management system
- SEP audit and certification
- Barriers
- Results and key to success
- Lessons learned
Company Overview

- Semiconductor design and manufacturing company established in 1953
- Focused on the automotive, networking, industrial, consumer, and enabling technologies
- Engaged with 10,000+ customers globally; over 100 of the top electronic manufacturers
- $5 billion in revenue in 2010
- Headquartered in Austin, Texas
- 20,000 employees in over 20 countries
Technology Offerings Across Markets

- **Automotive**
 - Multimedia Processors
 - Microcontrollers
 - Embedded Processors
 - Baseband Processing and RF Transceivers
- **Consumer**
 - Communication Processors
 - Control Processors
- **Industrial**
 - RF Power and MMICs
 - Sensors
- **Networking**
 - Analog & Power Management
 - Digital Signal Processor Technologies
Freescale Energy Conservation Pathway

- <1998 – Various energy conservation projects implemented
- 1998 – Facilities Technology Center established
- 2000 – Utilities conservation goals set for Austin plants
- 2001 – Austin Utilities Conservation Team formed
- 2001 – Motorola SPS Energy Council formed
- 2001 – Corporate energy conservation goals set
- 2005 – Gross margin improvement goals drive energy conservation
- 2005 – Corporate Utilities Conservation Team formed
- 2010 – Long term resource conservation goals set
- 2010 – Oak Hill plant SEP certification achieved
Oak Hill Site Overview

- Development and manufacture of semiconductors
- Wafer Fab makes microcontrollers, power management and radio frequency products for the automotive and wireless markets
 - Built in 1990 - First 200 mm semiconductor factory in the world
 - Fab cleanroom size: 100,000 s.f.
- New Product Introduction Probe & Test
- Corporate office buildings
- Total building space: 1.5 million s.f.
- 2300 employees
- Annual electrical consumption:
 - Electrical 200 million KWH
 - Natural gas 0.2 trillion BTU
Energy Profile

Electrical Consumption

- Fab Tools: 34%
- Fab Support: 19%
- Cair: 6%
- PCW: 6%
- Chilled water: 4%
- Exhaust: 4%
- N2: 3%
- UPW/IW: 2%
- Office & Labs: 1%
- Lighting: 1%
- Misc: 1%
- Other: 4%
Energy Profile

Natural Gas Consumption

- 75% Steam
- 15% Abatement
- 10% Fab Tools
SEP Training and Energy MS Implementation

- Created cross-functional team to participate in the pilot project
- Participated in workshops, webinars and technical assistance calls
- Developed energy MS integrated into existing environmental MS (ISO 14001)
- Developed energy management policy and set energy goals
- Two system assessments: pumping (chilled water) and compressed air
- Developed energy profile
- Documented operational criteria and procedures for systems identified as significant energy uses
- Developed key performance indicators and control charts at system level
- Developed energy performance indicators to calculate SEP improvement
 - Linear regression analysis: energy vs. manufacturing turns and enthalpy
- Conducted training to increase employee awareness of the SEP program
- Included N2 plant contractor in team meetings
- Conducted internal audit and management review
Energy Management System Structure

- Integration in the existing ISO 14001 EHS MS
- All documentation electronic
- Identical folder structure
- Shared elements
Chilled Water Pumping System Assessment

<table>
<thead>
<tr>
<th>Opportunity</th>
<th>Savings (KWH)</th>
<th>Savings ($)</th>
<th>Completed (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eliminate valve throttling loss for glycol chiller pumps. Trim impeller or install VFD.</td>
<td>292,000</td>
<td>$18K</td>
<td>Yes</td>
</tr>
<tr>
<td>Change glycol chiller differential pressure setpoint from 20 psi to 12 psi</td>
<td>60,000</td>
<td>$4K</td>
<td>Yes</td>
</tr>
<tr>
<td>Run 1 out of 2 secondary chilled water pumps for VFD/motor savings</td>
<td>19,000</td>
<td>$1K</td>
<td>No</td>
</tr>
<tr>
<td>Change secondary distribution differential pressure setpoint from 18 psi to 12 psi</td>
<td>87,000</td>
<td>$5K</td>
<td>Yes</td>
</tr>
<tr>
<td>Shutdown unneeded chiller and pumps by utilizing more flexibility on chiller startups</td>
<td>315,000</td>
<td>$20K</td>
<td>Yes</td>
</tr>
<tr>
<td>Replace condenser water pumps with more efficient pump</td>
<td>269,000</td>
<td>$17K</td>
<td>No</td>
</tr>
<tr>
<td>Total</td>
<td>1,042,000</td>
<td>$65,000</td>
<td></td>
</tr>
</tbody>
</table>
Compressed Air System Assessment

<table>
<thead>
<tr>
<th>Opportunity</th>
<th>Savings (KWH)</th>
<th>Savings ($)</th>
<th>Completed (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce system operating pressure</td>
<td>1,384,000</td>
<td>$87K</td>
<td>No</td>
</tr>
<tr>
<td>Add a 400 HP VSD compressor to operate as trim</td>
<td>398,000</td>
<td>$25K</td>
<td>No</td>
</tr>
<tr>
<td>Total</td>
<td>1,782,000</td>
<td>$112,000</td>
<td></td>
</tr>
</tbody>
</table>
Chilled Water KPI

CUB CHILLED WATER KW VS. ENTHALPY

CUB Chilled Water System KPI Checklist

CUB Chilled Water System kW Breakdown

Freescale, the Freescale logo, AbiVis, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, the Energy Efficient Solutions logo, mobileGT, PowerQUICC, QorIQ, StarCore and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Trademark Off. BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, Kinetis, MXC, Platform in a Package, Processor Expert, QorIQ Qonverge, Qorivva, QUICC Engine, SMARTMOS, TurboLink, VonIQs and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2011 Freescale Semiconductor, Inc.
SEP Audit and Certification

- Five auditors + three ANSI staff that were “auditing the auditors”
- Fifteen overall processes were audited, 0 major NCs, 5 minor NCs
- Energy performance improvement verified as 6.5%
- Oak Hill plant was recommended for certification at the Silver Level
- Corrective action plans were accepted by the auditor
- The auditor issued a certificate after ANSI accredited them as a registrar
- Certification requires surveillance audits (ANSI) for a 3 year period, and then re-certification
Demonstrating energy performance improvements

- Energy Performance Pathway vs. Mature Energy Pathway
- Explored using the SEP Mature Energy Pathway
- Gaps in data for 10-year period
- Low score on renewable energy and CHP
- Chose Energy Performance Pathway
- Challenge with correlating energy consumption to production level
- 2008 used as a mid-year and compared with the baseline year, 2006, and with 2009

Energy management integration into existing management systems

- Took a while to decide
- Shared some documents, such as Level 1 and Level 2
- Some other parts of the energy system are separate from the existing MS
- Formalized level 3 procedures
Results and Key to Success

- Oak Hill plant qualified as SEP Silver Certified Partner
- Successful incorporation of energy management into recognized company-wide management systems
- Energy management as a way of doing business, instead of making improvements on a project-by-project basis
- System KPIs driving continual improvement
- Leverage plant-level activities into a corporate-wide program
- Awareness of the certification out across the organization
- Engaging more employees in energy management and energy efficiency
- Support from senior management
Lessons Learned

- Leverage existing environmental or quality management systems and staff
- Cross-train your energy and management system staff
- Create cross-functional teams
- Establish management commitment upfront and keep communicating to management on project status
- Hold regular team meetings during the implementation phase
- Take a structured look at data using statistical methods to realize immediate benefits
Questions?