Flare Optimization- A Target for Energy Savings

IETC
New Orleans
May 31, 2012
LyondellBasell is…

- One of the world’s largest olefins, polyolefins, chemicals and refining companies with revenues of $41 billion (2010)

- The global leader in polyolefins technology, production and marketing

- A pioneer in propylene oxide and derivatives

- A producer of fuels and refined products, including biofuels

- Dedicated to ongoing research and development programs that meet the ever-changing requirements of our customers, including the creation of new catalysts, processes and products

- Listed on the New York Stock Exchange (NYSE) as a publicly traded company. Ticker symbol: LYB
Fast facts

- Third-largest independent chemical company in the world

Five business segments
- Olefins and Polyolefins – Americas
- Olefins and Polyolefins – Europe, Asia and International
- Intermediates and Derivatives
- Refining and Oxyfuels
- Technology

Delivers exceptional customer value across the petrochemical chain
- Vertically integrated facilities
- Broad product portfolio
- Manufacturing flexibility
- Superior technology base
- Operational excellence
Global reach

• 58 plants in 18 countries

• More than 14,000 employees worldwide

• Sales in more than 100 countries

Owned and operated by LyondellBasell, its subsidiaries and/or joint ventures
Diversified and vertically integrated portfolio

Wellhead

Refining

Olefins

Olefin Derivatives

2nd Level Derivatives

- Olefins & Polyolefins Americas
- Olefins & Polyolefins Europe Asia & International
- Intermediates & Derivatives
- Refining & OxyFuels
- Technology

Capturing value along the chain

Technology

Crude

Refining

Natural Gas Liquids

Aromatics

Fuels

Olefins Crackers

Olefins

Oxy Fuels

Polyethylene

Polypropylene

Polybutene-1

Propylene Oxide

Acetyls

Ethylene Oxide

Styrene

PP Compounding

Catalloy Process Resins

Glycols Glycol Ethers Butanediol

Glycols Glycol Ethers

lyondellbasell.com
Our product lines and the end markets we serve…

Olefins & Polyolefins
- Americas
- Europe, Asia & Int'l

Intermediate & Derivatives
- Ethylene
- Propylene
- Polyethylene
- Polypropylene
- Catalloy process resins
- PP Compounds
- Polybutene-1
- Propylene Oxide
- Styrene Monomer
- PG and PGE
- Acetyls
- C4 Chemicals
- Ethylene Oxide
- EG and EOD

End Uses
- Food Packaging
- Textiles
- Automotive
- Appliances
- Films
- Flexible Piping

End Uses
- Insulation
- Home Furnishings
- Adhesives
- Consumer Products
- Coatings

Refining & Oxyfuels
- Gasoline
- Diesel
- Olefins Feed
- Oxyfuels

End Uses
- Automotive Fuels
- Aviation Fuels
- Heating Oil
- Industrial Engine Lube Oils

End Uses
- Polyolefin and Chemical Manufacturers

Technology
- Process Licensing
- Catalyst Sales
- Technology Services
- New Ventures

lyondellbasell.com
Flare Optimization -
A Target for Energy Savings
Flares – Why do we need them?

- “The primary function of a flare is to use combustion to convert flammable, toxic or corrosive vapors to less objectionable compounds.” (API 521 paragraph 6.4.1)

- Critical process safety equipment for both….. emergency and routine operations.
Flows to Flare Systems

• Emergency
 – Pressure relief flows
 – Emergency depressurization

• Episodic
 – Venting required for maintenance
 – Venting required for regeneration
 – Shutdown/Start-up operations (de-inventorying)
 – Process Upsets

• Continuous – 99+% of Typical Operation
 – Sweep gas through the flare system piping
 – Process venting (continuous analyzer flows, gas seals, certain types of pressure control)
 – Pressure Relief Valve leakage

Main Focus for this discussion
Flare Operation – Main Areas of Evaluation

Purge Gas velocity
- Referenced against API 521, AIChE and LyondellBasell Engineering Stds.
- Current vs. required: Header & Flare tip

Purge Gas Btu Control
- Actual against EPA requirements
- Btu Control Mechanisms
- Off gas flow optimization
- Process Trends

Steam Optimization
- Manufacturer’s recommendation
- Automatic control systems

Inert gas
- Source identification
- Flow optimization
Areas Probed

- Flare Btu’s monitored?
- Is Natural Gas added to increase Btu value?
- Is Nitrogen used as purge for Flare header systems?
- Are flows monitored and instrument PMs performed?
- How is steam controlled?
Flare Assessment Tool

Calculations Performed

- Flare Gas composition
- FG Btu Value
- FG Header velocity
- Flare tip velocity
- Steam flow trends
- Inert composition
- Natural gas flow
Main Opportunity Themes- Low / No Cost

- High Flare header system velocities
 - Analysis of header flow inputs enables flow reduction
- Systematic analysis and minimization of Nitrogen purges
- NG addition minimization for purging
 - BTU control for the purge gas (usually between 200-300 Btu/SCF*) is essential
- Minimization of cooling steam to manufacturer’s recommendations
 - Fixed restriction orifices for tip cooling steam is a viable option
- Steam Optimization
 - Steam to hydrocarbon ratio control is recommended during episodic releases
- Component analysis reduces process leaks and minimizes product losses

* As defined in the Federal register 40 CFR 60.18 for 98% CE
Benefits

• Savings
 • High benefit to cost ratio
 – Energy Savings
 – Import purchase savings (Nitrogen, Nat Gas etc.)
 – Recover product loss in Flare

• Awareness
 • System design specification vs. actual operation
 – Optimum operation

• Environmental
 • Reduce pounds to the flare
 • Assure proper flare destruction efficiency (DE)
 – EPA Requirements
 – TCEQ Focus
Impact of Steam on DE

- Steam to HC ratio < 3 to 1 = 98% +
- Steam to HC ratio 5 to 1 = 82%
- Steam to HC ratio 6 to 1 = 69%*

*Based on testing protocols:
 - EPA / CMA joint testing program in 1982 (propylene / nitrogen / natural gas mixtures)
 - EPA / EER (Energy Environmental Research) testing program in 1984 to 1986 (H₂S / propane / nitrogen mixtures)
 - EPA / DuPont testing program in 1997 (hydrogen influence)
An optimized Flare system will have a significant impact on site Energy reduction and flare Destruction Efficiency improvement
Disclaimer

• All information contained herein is provided without compensation and is intended to be general in nature. You should not rely on it in making any decision. LyondellBasell accepts no responsibility for results obtained by the application of this Information, and disclaims liability for all damages, including without limitation, direct, indirect, incidental, consequential, special, exemplary or punitive damages, alleged to have been caused by or in connection with the use of this Information. LyondellBasell disclaims all warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose, that might arise in connection with this information.